skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhou, Hong-Sheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 2, 2026
  2. Free, publicly-accessible full text available December 2, 2026
  3. Free, publicly-accessible full text available December 8, 2026
  4. Free, publicly-accessible full text available December 8, 2026
  5. Free, publicly-accessible full text available November 19, 2026
  6. Free, publicly-accessible full text available July 21, 2026
  7. Kowalski, Dariusz R (Ed.)
    Broadcast is a fundamental primitive that plays an important role in secure Multi-Party Computation (MPC) area. In this work, we revisit the broadcast with selective abort (hereafter, short for broadcast) proposed by Goldwasser and Lindell (DISC 2002; JoC 2005) and study the round complexity of broadcast under different setup assumptions. Our findings are summarized as follows: - We formally prove that 1-round broadcast is impossible under various widely-used setup assumptions (e.g., plain model, random oracle model, and common reference string model, etc.), even if we consider the static security and the stand-alone framework. More concretely, we formalize a notion called consistent oracle to capture these setups, and prove that our impossibility holds under the consistent oracle. Our impossibility holds in both honest majority setting and dishonest majority setting. - We show that 1-round broadcast protocol is possible in the Universal Composition (UC) framework, by assuming stateful trusted hardwares. Our protocol can be proven secure against all-but-one adaptive and malicious corruptions. We bypass our impossibility result since our stateful trusted hardwares do not satisfy the definition of consistent oracle. - We provide an application of 1-round broadcast: we construct the first 1-round multiple-verifier zero-knowledge (which is a special case of MPC) protocol, without assuming the broadcast hybrid world. 
    more » « less
  8. Free, publicly-accessible full text available June 30, 2026